To Separate Speech! A System for Recognizing Simultaneous Speech
نویسندگان
چکیده
The PASCAL Speech Separation Challenge (SSC) is based on a corpus of sentences from the Wall Street Journal task read by two speakers simultaneously and captured with two circular eight-channel microphone arrays. This work describes our system for the recognition of such simultaneous speech. Our system has four principal components: A person tracker returns the locations of both active speakers, as well as segmentation information for each utterance, which are often of unequal length; two beamformers in generalized sidelobe canceller (GSC) configuration separate the simultaneous speech by setting their active weight vectors according to a minimum mutual information (MMI) criterion; a postfilter and binary mask operating on the outputs of the beamformers further enhance the separated speech; and finally an automatic speech recognition (ASR) engine based on a weighted finite-state transducer (WFST) returns the most likely word hypotheses for the separated streams. In addition to optimizing each of these components, we investigated the effect of the filter bank design used to perform subband analysis and synthesis during beamforming. On the SSC development data, our system achieved a word error rate of 39.6%.
منابع مشابه
A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملRecognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model
Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....
متن کاملSpoken Term Detection for Persian News of Islamic Republic of Iran Broadcasting
Islamic Republic of Iran Broadcasting (IRIB) as one of the biggest broadcasting organizations, produces thousands of hours of media content daily. Accordingly, the IRIBchr('39')s archive is one of the richest archives in Iran containing a huge amount of multimedia data. Monitoring this massive volume of data, and brows and retrieval of this archive is one of the key issues for this broadcasting...
متن کاملA Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملDesign and Implementation of an Intelligent Part of Speech Generator
The aim of this paper is to report on an attempt to design and implement an intelligent system capable of generating the correct part of speech for a given sentence while the sentence is totally new to the system and not stored in any database available to the system. It follows the same steps a normal individual does to provide the correct parts of speech using a natural language processor. It...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007